

Prediction of Flight Categories using LSTM Deep Learning

Presenter: Timothy Wainscott – Florida Tech Graduate Mentor: Robbie Breininger Faculty Advisors: Prof. Michael Splitt, Dr. Nezamoddin N. Kachouie

Table of Contents

- **1. Introduction**
- 2. Data
- 3. Methodology
- 4. Results
- **5. Conclusions**
- 6. Future Work

Prediction of Flight Categories using LSTM Deep Learning

Presenter: Timothy Wainscott – *Florida Tech* Graduate Mentor: Robbie Breininger Faculty Advisors: Prof. Michael Splitt, Dr. Nezamoddin N. Kachouie

1. Introduction

2

7/2/24

Prediction of Flight Categories using LSTM Deep Learning

ction of Flight Cu

Weather Effects on Flight

Part 91 = GA = General Aviation – private and recreational flying in small aircraft Part 135 = Commuter and on-demand flying (government, corporate, and helicopter operations)

⁶ Part 91 Weather-Related Accidents 2008-2022

	Weather-Related	Non-Weather Related	Total	Weather-Related Percentage
Accidents	4,341	15,197	19,538	22%
Fatal Accidents	990	2,586	3,576	28%
			D.Eick / J.1	homas NTSB 2024
	Eich, D. (2024, April). NTSB	Weather Related Accidents. In FPAW 2024 S	pring Meeting	

3

Prediction of Flight Categories using LSTM Deep Learning

7/2/24

Flight Rules

 Pilots operate under two different sets of procedures and practices while flying:

> Visual Flight Rules (VFR) – primarily visual-based flying – limited communication with ATC – navigation is pilot-controlled

Instrument Flight Rules (IFR) – primarily instrument-based flying – constant communication with ATC

navigation is ATC-controlled

Flight Categories

- Surface-based weather conditions divide flight rules into four flight categories (FCATs):
 - VFR, MVFR, IFR, LIFR

Category	Ceiling		Visibility
Visual Flight Rules VFR (green sky symbol)	greater than 3,000 feet AGL	and	greater than 5 miles
Marginal Visual Flight Rules MVFR (blue sky symbol)	1,000 to 3,000 feet AGL	and/or	3 to 5 miles
Instrument Flight Rules IFR (red sky symbol)	500 to below 1,000 feet AGL	and/or	1 mile to less than 3 miles
Low Instrument Flight Rules LIFR (magenta sky symbol)	below 500 feet AGL	and/or	less than 1 mile

https://www.faasafety.gov/gslac/alc/libview_printerfriendly.aspx?id=9091

Prediction of Flight Categories using LSTM Deep Learning

Flight Rules

- Aircraft need to have certain instruments to be IFR certified
- Pilots need to be trained to be IFR certified
- Aircraft and/or pilot wet wet wet and to divert to

7/2/24

How can we predict flight category if not already readily available?

Prediction of Flight Categories using LSTM Deep Learning

7/2/24

Method 1 – Educated Guess

Applied Cognitive Psychology, Appl. Cognit. Psychol. **30**: 532–543 (2016) Published online 8 April 2016 in Wiley Online Library (wileyonlinelibrary.com) **DOI**: 10.1002/acp.3225

Cognitive Biases in Visual Pilots' Weather-Related Decision Making

STEPHEN WALMSLEY and ANDREW GILBEY*

School of Aviation, Massey University, Palmerston North, New Zealand

- Pilots interpret weather differently based on previous information
- Pilots do not favor disconfirming evidence over confirming evidence
- Pilots would replicate a flight into IMC conditions if the outcome was favorable

8

7/2/24

Method 1 – Educated Guess

Effects of Weather Information Observability and Uncertainty on Pilot Assessment of Weather Conditions and Decision Making

Barrett S. Caldwell, PhD12, Michael E. Splitt, MA3, and A. N. "Evv" Boerwinkle1 School of Industrial Engineering, Purdue University, West Lafayette, IN 2School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN ³College of Aeronautics, Florida Institute of Technology, Melbourne, FL

7/2/24	Prediction of Flight Categories using LSTM Deep Learning		9	FLO	RIDA'S STEM L	INIVERSITY'
(a)						:UH
	(b)	HIGH OBS	0	11	13	0
a second and a second all	THE STRACT AND	MED OBS	3	17	3	1
ALL AND A		LOW OBS	21	3	0	0
	NOV CONTRACTOR AND	Location C	VFR	MVFR	IFR	LIFR
(8)	ALL KARES					
		HIGH OBS	2	22	0	0
MY THE SHARE		MED OBS	16	8	0	0
		LOW OBS	20	4	0	0
		Location B	VFR	MVFR	IFR	LIFR
		HIGH OBS	0	23	1	0
STALL AND AND A	CARLE LA LA LA PROPERTY	MED OBS	23	1	0	0
		LOW OBS	14	10	0	0
		Location A	VFR	MVFR	IFR	LIFR

Method 2 – Nearest Neighbor ("Dummy") Forecast

• See when a nearby station has a reported FCAT and see what are the chances that another station has the same FCAT

	Station 1	Station 2	VFR Count	VFR Percentage	IFR Count	IFR Percentage	Total Count
1	GEV	MKJ	5054	0.94	298	0.06	5352
2	GEV	VJI	5093	0.99	63	0.01	5156
3	GEV	JFZ	5282	0.97	144	0.03	5426
4	JFZ	МКЈ	5663	0.96	265	0.04	5928
5	JFZ	VJI	5909	0.97	182	0.03	6091
6	JFZ	GEV	5282	0.97	144	0.03	5426
7	MKJ	JFZ	5663	0.96	265	0.04	5928
8	MKJ	GEV	5054	0.94	298	0.06	5352
9	MKJ	VJI	5524	0.96	222	0.04	5746
10	VJI	JFZ	5909	0.97	182	0.03	6091
11	VJI	GEV	5093	0.99	63	0.01	5156
12	VJI	МКЈ	5524	0.96	222	0.04	5746

10

Prediction of Flight Categories using LSTM Deep Learning

7/2/24

Method 3 – Numerically Predict Ceiling Height & Visibility

A Comparative Verification of Localized Aviation Model Output Statistics Program (LAMP) and Numerical Weather Prediction (NWP) Model Forecasts of Ceiling Height and Visibility

DAVID E. RUDACK AND JUDY E. GHIRARDELLI

Meteorological Development Laboratory, Office of Science and Technology, NOAA/NWS, Silver Spring, Maryland

(Manuscript received 18 November 2009, in final form 3 March 2010)

- Uses numeric models to predict ceiling height and visibility
- Accurate from 0 h future to 25 h future

 Is a complex way to solve our main research question

11

Method 4 – Our Objective

Use Neural Networks to Predict Flight Rules

12

Prediction of Flight Categories using LSTM Deep Learning

7/2/24

Method 4 – Our Objective

Use Neural Networks to Predict Flight Rules

Hypothesis:

LSTM NNs will accurately predict Flight Categories

13

7/2/24

Sample Size

 194 total airports (stations) in the Appalachian region

 Neural network model uses 4 equidistant stations from sample

First Data Source

- AWOS/ASOS sites give hourly updates of weather including:
 - Visibility
 - Cloud Ceiling
 - Air Temperature
 - Dew Point
 - Relative Humidity
 - Wind Speed
- These will be our predictors for our prediction model

18

https://mesotech.com/pages/awos-3pt

Neural Network Data

- For predictors, we use
 - FCATs (reported)
 - Air Temp (°C)
 - Dew Point (°C)
 - Relative Humidity (%)
 - and Wind Speed (kts)

;	> flight_da	ta_more												
	Station	Date	Time	CFCAT	VFCAT	FCAT	Air	Temp	Dew	Point	Rel	Humid	Wind	Speed
	L BCB	01/01/2019	01:00:00	MVFR	VFR	MVFR		15		13		88		5
	2 BCB	01/01/2019	02:00:00	MVFR	VFR	MVFR		16		13		82		7
	BCB	01/01/2019	03:00:00	MVFR	VFR	MVFR		17		14		82		5
1	4 BCB	01/01/2019	04:00:00	VFR	VFR	VFR		17		13		77		7
	5 BCB	01/01/2019	05:00:00	VFR	VFR	VFR		17		13		77		8
(5 BCB	01/01/2019	06:00:00	VFR	VFR	VFR		16		13		82		7
1	7 BCB	01/01/2019	07:00:00	VFR	VFR	VFR		15		13		88		6
2	BCB	01/01/2019	08:00:00	MVFR	VFR	MVFR		15		14		94		7
9	BCB	01/01/2019	10:00:00	VFR	VFR	VFR		13		11		88		6
1	LO BCB	01/01/2019	11:00:00	VFR	VFR	VFR		12		9		82		8
1	L1 BCB	01/01/2019	12:00:00	VFR	VFR	VFR		12		8		76		5
1	L2 BCB	01/01/2019	13:00:00	VFR	VFR	VFR		12		8		76		7
1	L3 BCB	01/01/2019	14:00:00	VFR	VFR	VFR		12		8		76		4
1	L4 BCB	01/01/2019	15:00:00	MVFR	VFR	MVFR		13		9		77		6

FLORIDA TECH

Data Preparation – Neural Network

- Take FCATs of four stations and merge them according to date and timer
- Remove date, time, weather predictors (optional), and missing data

	FCAT JFZ	Date	Time	Temp (C)	Rel Humid	Wind Sp	FCAT MKJ	FCAT GEV	FCAT VJI
0	1	2020-03-01	1900-01-01 00:00:00	-3.0	54.0	3.0	1	1	1
1	1	2020-03-01	1900-01-01 01:00:00	-3.0	54.0	6.0	1	1	1
2	1	2020-03-01	1900-01-01 02:00:00	-3.0	54.0	6.0	1	1	1
3	1	2020-03-01	1900-01-01 03:00:00	-3.0	54.0	6.0	1	1	1
4	1	2020-03-01	1900-01-01 04:00:00	-3.0	54.0	5.0	1	1	1
6	1	2020-03-01	1900-01-01 05:00:00	-4.0	58.0	5.0	1	1	1
7	1	2020-03-01	1900-01-01 06:00:00	-4.0	58.0	4.0	1	1	1
8	1	2020-03-01	1900-01-01 07:00:00	-4.0	58.0	4.0	1	1	1
9	1	2020-03-01	1900-01-01 08:00:00	-4.0	58.0	3.0	1	1	1
10	1	2020-03-01	1900-01-01 09:00:00	-4.0	58.0	3.0	1	1	1
11	1	2020-03-01	1900-01-01 10:00:00	-4.0	58.0	0.0	1	1	1
12	1	2020-03-01	1900-01-01 11:00:00	-5.0	63.0	0.0	1	1	1
		Prediction	of Elight Categories	using I STM	Deen Learni	na			20

7/2/24

Data Preparation – Neural Network

- Separate response variable from predictor variable
- Split data sets into training and testing data sets

Response

Training			Testing		Training			Test	ing
[1]		FCAT JFZ	[1]		[[1. 0. 1.]]	FCAT MKJ	FCAT GEV	FCAT VJI	1.]]
[1]	0	1	[1]		[[1. 1. 1.]]	1	1	1	1.]]
[1]	1	1	[1]			1	1	1	
[1]	2	1	[1]		[[1. 1. 1.]]	1	1	1	1.]]
[1]	3	1	[0]		[[1. 1. 1.]]	1	1	1	1.]]
[1]	4	1	[1]		[[1, 1, 1, 1]]	1	1	1	0.11
[1]	6	1	[0]		[[]]	1	1	1	
[1]	7	1	[1]		[[1. 1. 1.]]	1	1	1	1.]]
[1]	8	1	[1]			1	1	1	1.]]
[1]	9	1	[1]			1	1	1	
[1] [1]	10	1	[1] [1]		[[1. 1. 1.]]	1	1	1	1.]]
[1]	11	1	[1]		[[1. 1. 1.]]	1	1	1	0.]]
[1]	12	1	[1]			1	1	1	

Predictors

21

7/2/24

Data Preparation – Neural Network

- Multiple questions as to how to format data for future work
 - Training-testing data split?
 - Date and time?
 - Missing data?
 - Weather predictors?
 - Geospatial/Cluster predictors?

22

3. Methodology

7/2/24

Prediction of Flight Categories using LSTM Deep Learning

Recurrent Neural Networks

- Neural network that uses previous information in the next sequential data
- Commonly used in time series data

Recurrent Neural Networks

 Is the basis of our prediction model

Recurrent Neural Networks – Main Issue

- Difficult with large datasets
- Gradients (rate of change in loss) can either vanish or explode

Long Short-Term Memory Neural Networks

- Solves the problem and exploding and vanishing gradients
- Uses gates to keep and forget certain information
- Can be made to go sequentially or bidirectionally

https://www.analyticsvidhya.com/blog/2022/01/the-complete-lstm-tutorial-with-implementation/

26

Gated Recurrent Units

 Also solves vanishing and exploding gradient problem

LSTMs and GRUs

 Combines "forget" and "remember" gate in LSTM into one "update" gate

https://www.youtube.com/watch?app=desktop&v=4F69m3krMHw

27

7/2/24

4. Results

28

7/2/24

Results – LSTM: Binary

Results – LSTM: Multiclass

Confusion Matrices – LSTM: Binary

Confusion Matrices – LSTM: Multiclass

7/2/24

Prediction of Flight Categories using LSTM Deep Learning

FLORIDA'S STEM UNIVERSITY

Models	Accura	acy (%)	Loss		
	MKJ	VJI	MKJ	VJI	
RNN	86.06	93.35	0.3080	0.1828	
GRU	85.96	93.43	0.3085	0.1823	
LSTM	85.96	93.38	0.3081	0.1824	

Table 13: Twenty-run average accuracy and loss for all stations (binary, 1 year data length)

Models	Accura	ucy (%)	Loss		
	MKJ	V.JI	MKJ	VJI	
RNN	74.60	83.29	0.6592	0.4683	
GRU	74.96	83.34	0.6548	0.4651	
LSTM	74.54	83.20	0.6570	0.4675	

Table 14: Twenty-run average accuracy and loss for all stations (multi-class, 1 year data length)

7/2/24

FCAT	Models	Pos/Neg Predict	ion Accuracy (%)	True Pos/Neg Rate (%)		
		MKJ	V.JI	MKJ	VJI	
VFR	RNN	88.62	94.58	95.65	98.51	
	GRU	89.61	94.50	93.95	98.39	
	LSTM	88.70	94.43	95.38	98.74	
	RNN	65.53	65.42	38.17	32.22	
IFR	GRU	62.86	64.80	44.54	33.25	
	LSTM	64.99	66.67	38.75	30.16	

Table 15: Twenty-run average prediction and actual FCAT accuracy for all stations (binary, 1 year data length)

34

7/2/24

FCAT	Models	Pos/Neg Predict	ion Accuracy (%)	True Pos/Neg Rate (%)		
	Models	MKJ	V.JI	MKJ	V.JI	
VFR	RNN	88.62	94.58	95.65	98.51	
	GRU	89.61	94.50	93.95	98.39	
	LSTM	88.70	94.43	95.38	98.74	
	RNN	65.53	65.42	38.17	32.22	
IFR	GRU	62.86	64.80	44.54	33.25	
	LSTM	64.99	66.67	38.75	30.16	

Table 15: Twenty-run average prediction and actual FCAT accuracy for all stations (binary, 1 year data length)

35

7/2/24

FCAT	Models	Pos/Neg Predict	ion Accuracy (%)	True Pos/Neg Rate (%)		
		MKJ	V.JI	MKJ	VJI	
VFR	RNN	88.62	94.58	95.65	98.51	
	GRU	89.61	94.50	93.95	98.39	
	LSTM	88.70	94.43	95.38	98.74	
	RNN	65.53	65.42	38.17	32.22	
IFR	GRU	62.86	64.80	44.54	33.25	
	LSTM	64.99	66.67	38.75	30.16	

Table 15: Twenty-run average prediction and actual FCAT accuracy for all stations (binary, 1 year data length)

36

7/2/24

FCAT	Modele	Pos/Neg Predict	ion Accuracy (%)	True Pos/Neg	Accuracy (%)
FOAT	Models	MKJ	V.JI	MKJ	VJI
	RNN	83.07	90.66	94.42	94.62
VFR	GRU	84.75	90.76	93.40	94.60
	LSTM	84.82	90.68	93.16	94.64
	RNN	63.74	62.54	50.57	58.35
MVFR	GRU	64.26	62.83	50.69	58.19
	LSTM	62.59	62.32	51.51	58.02
	RNN	45.52	33.99	33.38	30.32
IFR	GRU	40.88	39.07	40.60	39.22
	LSTM	39.15	39.67	40.07	36.51
	RNN	38.13	34.66	24.24	26.25
LIFR	GRU	35.70	38.05	26.00	23.51
	LSTM	38.03	36.21	21.29	23.75

Table 16: Twenty-run average prediction and actual FCAT accuracy for all stations (multi-class, 1

7/2/24

year data length)

Models	Accura	acy (%)	Loss		
Models	MKJ	VJI	MKJ	VJI	
RNN	86.06	93.35	0.3080	0.1828	
GRU	- 0.10	+ 0.08	+ 0.0005	- 0.0005	
LSTM	- 0.10	+ 0.03	+ 0.0001	- 0.0004	

Table 17: Comparing accuracies and losses between RNN, GRU, and LSTM, with RNN as the baseline (binary, 1 year data length)

Models	Accura	ucy (%)	Loss		
Models	MKJ	VJI	MKJ	VJI	
RNN	74.60	83.29	0.6592	0.4683	
GRU	+ 0.36	+ 0.05	+ 0.0044	- 0.0032	
LSTM	- 0.06	- 0.09	- 0.0022	- 0.0008	

Table 18: Comparing accuracies and losses between RNN, GRU, and LSTM, with RNN as the baseline (multi-class, 1 year data length)

38

Prediction of Flight Categories using LSTM Deep Learning

7/2/24

FCAT	Models	Pos/Neg Predict	ion Accuracy (%)	True Pos/Neg Rate (%)			
FORT	Models	MKJ	V.JI	MKJ	VJI		
	RNN	88.62	94.58	95.65	98.51		
VFR	GRU	+ 0.99	+ 0.08	- 1.70	- 0.12		
	LSTM	+ 0.08	-0.15	-0.27	+ 0.23		
	RNN	65.53	65.42	38.17	32.22		
IFR	GRU	-2.67	-0.62	+ 6.37	+ 1.03		
	LSTM	-0.54	+ 1.25	+ 0.58	-2.06		

Table 19: Comparing average prediction and actual FCAT accuracy for all stations between RNN, GRU, and LSTM, with RNN as the baseline (binary, 1 year data length)

7/2/24

Prediction of Flight Categories using LSTM Deep Learning

FLORIDA'S STEM UNIVERSITY'

FCAT	Models	Pos/Neg Predicti	ion Accuracy (%)	True Pos/Neg	g Accuracy (%)
FOAT	Models	MKJ	MKJ VJI		V.JI
	RNN	83.07	90.66	94.42	94.62
VFR	GRU	+1.68	+0.10	-1.02	-0.02
	LSTM	+1.75	+0.02	-1.26	+0.02
	RNN	63.74	62.54	50.57	58.35
MVFR	GRU	+0.52	+0.29	-0.12	-0.16
	LSTM	+1.15	-0.24	+0.94	-0.33
	RNN	45.52	33.99	33.38	30.32
IFR	GRU	-4.64	+5.08	+7.22	+8.90
	LSTM	-6.37	+5.68	+6.69	+6.19
	RNN	38.13	34.66	24.24	26.25
LIFR	GRU	-2.40	+3.39	+1.76	-2.74
	LSTM	-0.10	+1.55	-2.95	-2.50

7/2/24

Table 20: Comparing average prediction and actual FCAT accuracy for all stations between RNN, GRU, and LSTM, with RNN as the baseline (multi-class, 1 year data length)

5. Conclusions

7/2/24

Prediction of Flight Categories using LSTM Deep Learning

Conclusions

7/2/24

- Binary has higher accuracy than multiclass, but loss doesn't decrease with validation data
- All three models have similar binary accuracy
- Models struggle with predicting rare events
- There are problems with certain stations having better/worse predictions than others

42

6. Future Work

43

7/2/24

Future Work

- Continue to test our prediction model
 - Data splits
 - Different models
 - Predictors
 - Architecture
- Incorporate hierarchical clustering and/or geospatial data into our model

Research Team

(photo taken on Space Mountain at Disney World)

Timothy Wainscott Florida Tech

Robbie Breininger Graduate Student Assistant

Dr. Nezamoddin N. Kachouie Dept. of Mathematical Sciences

Prof. Michael Splitt College of Aeronautics

45

Prediction of Flight Categories using LSTM Deep Learning

FLORIDA'S STEM UNIVERSITY

Thanks! Questions?

Appendix

Methodology

https://towardsdatascience.com/grus-and-lstm-s-741709a9b9b1

LSTM Structure

LONG SHORT-TERM MEMORY NEURAL NETWORKS

https://towardsdatascience.com/lstm-recurrent-neural-networks-how-to-teach-a-network-to-remember-the-past-55e54c2ff22e

GRU Structure

Results

Models		Accura	cy (%)		Loss				
Models	MKJ	GEV	V.JI	JFZ	MKJ	GEV	VJI	JFZ	
RNN	86.06	86.61	93.35	86.78	0.3080	0.3653	0.1828	0.3574	
GRU	85.96	86.60	93.43	86.78	0.3085	0.3654	0.1823	0.3582	
LSTM	85.96	86.61	93.38	86.76	0.3081	0.3652	0.1824	0.3577	

Table 5: Twenty-run average accuracy and loss for all stations (binary, 1 year data length)

Models		Accura	acy (%)		Loss			
Models	MKJ	GEV	VJI	JFZ	MKJ	GEV	VJI	$_{\rm JFZ}$
RNN	74.60	69.81	83.29	75.07	0.6592	0.7902	0.4683	0.6936
GRU	74.96	69.80	83.34	74.91	0.6548	0.7893	0.4651	0.6915
LSTM	74.54	69.79	83.20	74.91	0.6570	0.7893	0.4675	0.6947

Table 6: Twenty-run average accuracy and loss for all stations (multi-class, 1 year data length)

FCAT	Models	Pos/Ne	g Predicti	on Accur	acy (%)	True Pos/Neg Rate (%)			
		MKJ	GEV	VJI	JFZ	MKJ	GEV	VJI	$_{\rm JFZ}$
	RNN	88.62	88.91	94.58	88.97	95.65	95.62	98.51	96.44
VFR	GRU	89.61	89.00	94.50	89.05	93.95	95.55	98.39	96.27
	LSTM	88.70	89.00	94.43	89.01	95.38	95.55	98.74	96.36
	RNN	65.53	68.50	65.42	60.54	38.17	44.39	32.22	31.12
IFR	GRU	62.86	68.42	64.80	59.69	44.54	44.98	33.25	31.82
	LSTM	64.99	68.42	66.67	60.11	38.75	44.98	30.16	31.47

Table 7: Twenty-run average prediction and actual FCAT accuracy for all stations (binary, 1 year data length)

FCAT	Models	Pos/N	eg Predicti	on Accurac	cy (%)	True Pos/Neg Accuracy (%)			
FOAT	Models	MKJ	GEV	VJI	JFZ	MKJ	GEV	V.JI	JFZ
	RNN	83.07	79.91	90.66	83.15	94.42	85.10	94.62	94.81
VFR	GRU	84.75	79.96	90.76	82.55	93.40	85.13	94.60	94.90
	LSTM	84.82	80.08	90.68	82.81	93.16	84.71	94.64	94.64
	RNN	63.74	42.92	62.54	45.05	50.57	37.99	58.35	36.58
MVFR	GRU	64.26	41.54	62.83	45.35	50.69	37.87	58.19	37.89
	LSTM	62.59	41.99	62.32	44.75	51.51	39.07	58.02	39.53
	RNN	45.52	52.92	33.99	45.24	33.38	64.90	30.32	40.73
IFR	GRU	40.88	53.62	39.07	47.76	40.60	63.82	39.22	38.01
	LSTM	39.15	53.58	39.67	48.43	40.07	64.36	36.51	37.13
	RNN	38.13	-	34.66	-	24.24	0.00	26.25	0.00
LIFR	GRU	35.70	-	38.05	1.82	26.00	0.00	23.51	2.04
	LSTM	38.03	-	36.21	-	21.29	0.00	23.75	0.00

Table 8: Twenty-run average prediction and actual FCAT accuracy for all stations (multi-class, 1 year data length)

Models		Accura	acy (%)		Loss				
Wodels	MKJ	GEV	VJI	JFZ	MKJ	GEV	VJI	JFZ	
RNN	86.06	86.61	93.35	86.78	0.3080	0.3653	0.1828	0.3574	
GRU	- 0.10	- 0.01	+ 0.08	± 0.00	+ 0.0005	+ 0.0001	-0.0005	+ 0.0008	
LSTM	- 0.10	± 0.00	+ 0.03	- 0.02	+ 0.0001	- 0.0001	- 0.0004	+ 0.0003	

Table 9: Comparing accuracies and losses between RNN, GRU, and LSTM, with RNN as the baseline (binary, 1 year data length)

Models		Accura	acy (%)		Loss				
WOUCHS	MKJ	GEV	VJI	JFZ	MKJ	GEV	VJI	JFZ	
RNN	74.60	69.81	83.29	75.07	0.6592	0.7902	0.4683	0.6936	
GRU	+ 0.36	- 0.01	+ 0.05	- 0.16	+ 0.0044	- 0.0009	- 0.0032	+ 0.0021	
LSTM	- 0.06	- 0.02	- 0.09	- 0.16	- 0.0022	- 0.0009	- 0.0008	+ 0.0011	

Table 10: Comparing accuracies and losses between RNN, GRU, and LSTM, with RNN as the baseline (multi-class, 1 year data length)

FCAT	Models	Pos/Ne	eg Predicti	on Accura	acy (%)	True Pos/Neg Rate (%)			
FOAT		MKJ	GEV	VJI	JFZ	MKJ	GEV	VJI	JFZ
	RNN	88.62	88.91	94.58	88.97	95.65	95.62	98.51	96.44
VFR	GRU	+ 0.99	+ 0.09	+ 0.08	+ 0.08	- 1.70	- 0.07	- 0.12	- 0.14
	LSTM	+ 0.08	+ 0.09	- 0.15	+ 0.04	-0.27	+ 0.07	+ 0.23	- 0.08
	RNN	65.53	68.50	65.42	60.54	38.17	44.39	32.22	31.12
IFR	GRU	-2.67	- 0.08	- 0.62	-0.85	+ 6.37	+ 0.59	+ 1.03	+ 0.70
	LSTM	- 0.54	- 0.08	+ 1.25	- 0.43	+ 0.58	+ 0.59	- 2.06	+ 0.35

Table 11: Comparing average prediction and actual FCAT accuracy for all stations between RNN, GRU, and LSTM, with RNN as the baseline (binary, 1 year data length)

FCAT	Models	Pos/Neg Prediction Accuracy (%)				True Pos/Neg Accuracy (%)			
		MKJ	GEV	VJI	JFZ	MKJ	GEV	VJI	JFZ
VFR	RNN	83.07	79.91	90.66	83.15	94.42	85.10	94.62	94.81
	GRU	+1.68	+0.05	+0.10	-0.60	-1.02	+0.03	-0.02	+0.09
	LSTM	+1.75	+0.17	+0.02	-0.34	-1.26	-0.39	+0.02	-0.17
MVFR	RNN	63.74	42.92	62.54	45.05	50.57	37.99	58.35	36.58
	GRU	+0.52	-1.38	+0.29	+0.30	-0.12	-0.12	-0.16	+1.31
	LSTM	+1.15	-0.93	-0.24	-0.30	+0.94	+1.08	-0.33	+2.95
IFR	RNN	45.52	52.92	33.99	45.24	33.38	64.90	30.32	40.73
	GRU	-4.64	+0.70	+5.08	+2.52	+7.22	-1.08	+8.90	-2.72
	LSTM	-6.37	+0.66	+5.68	+3.19	+6.69	-0.54	+6.19	-3.60
LIFR	RNN	38.13	-	34.66	-	24.24	0.00	26.25	0.00
	GRU	-2.40	-	+3.39	+1.82	+1.76	± 0.00	-2.74	+2.04
	LSTM	-0.10	-	+1.55	=	-2.95	± 0.00	-2.50	±0.00

Table 12: Comparing average prediction and actual FCAT accuracy for all stations between RNN, GRU, and LSTM, with RNN as the baseline (multi-class, 1 year data length)

